Pre-Columbian deforestation as an amplifier of drought in Mesoamerica

B. I. Cook,1,2 K. J. Anchukaitis,2 J. O. Kaplan,3 M. J. Puma,1 M. Kelley,1 and D. Gueyffier4

Received 1 June 2012; accepted 24 June 2012; published 25 August 2012.

[1] Droughts in pre-Columbian Mesoamerica caused significant societal disruptions during the Late Classic and Post-Classic Periods. While the primary causes of these droughts are still debated, it has been speculated that they may be linked to extensive deforestation associated with high population densities during these intervals. Here we show that pre-Columbian deforestation would have biased the climate in Mesoamerica towards a drier mean state, amplifying drought in the region. In climate model simulations using a pre-Columbian land cover reconstruction, annual precipitation decreases by 5%–15% throughout southern Mexico and the Yucatán compared to simulations using either natural forest cover or forest regrowth associated with population declines after 1500 C.E. These changes are driven primarily by large reductions (10%–20%) in precipitation during the late summer wet season (August–September). When compared to precipitation changes estimated to have occurred during the Maya collapse, our results suggest that deforestation could account for up to sixty percent of the mean drying during this interval. Many regions previously deforested in the pre-Columbian era are now under dense forest cover, indicating potential future climate impacts should tropical deforestation of these areas accelerate. Citation: Cook, B. I., K. J. Anchukaitis, J. O. Kaplan, M. J. Puma, M. Kelley, and D. Gueyffier (2012), Pre-Columbian deforestation as an amplifier of drought in Mesoamerica, Geophys. Res. Lett., 39, L16706, doi:10.1029/2012GL052565.

1. Introduction

[2] Severe drought almost certainly played a significant role in the dissolution of the dominant civilizations in pre-Columbian Mesoamerica, including the Maya, Toltec, and Aztec Triple Alliance [Davies et al., 2004; Haug et al., 2003; Hodell et al., 1995; Metcalfe and Davies, 2007; Stahle et al., 2011; Stahle and Dean, 2011; Therrell et al., 2004]. One recent study, for example, estimated that the collapse of the Maya coincided with a 25%–40% reduction in mean annual precipitation [Medina-Elizalde and Rohling, 2012]. Various hypotheses have been offered to explain the causes of these droughts, including internal climate system variability [Hunt and Elliott, 2005], solar forcing [Hodell et al., 2001], and deforestation [Oglesby et al., 2010; Shaw, 2003].

[3] In Oglesby et al. [2010, hereinafter OG10], the authors conducted the first modeling study to explicitly test the deforestation-drought hypothesis. Using a regional model, OG10 found that complete deforestation over Mesoamerica was capable of causing a 15%–30% reduction in wet season (July) precipitation, relative to a scenario with all evergreen tropical forest cover. This drying was caused by the thermal mountain effect [Stern and Malkus, 1953], driven by reduced evapotranspiration and increased sensible heating in the deforestation case. The enhanced sensible heating increased surface air temperatures, generating rising parcels of warm air that created high pressure aloft, stabilizing the atmosphere and reducing convection and precipitation.

[4] Primary evidence for widespread pre-Columbian deforestation in Mesoamerica comes from sediment records of pollen and fire history [e.g., Binford et al., 1987; Piperno, 2006]. Prior to the arrival of Europeans, Mesoamerica was likely home to over 19 million people [Dobyns, 1966; Denevan, 1992; Lovell and Luz, 1995; Dull et al., 2010], concentrated in central and southern Mexico, the Petén lowlands, and the Yucatán peninsula, where these populations converted large expanses of natural forest into agricultural land [Dull, 2008; Piperno, 2006; Whitmore and Turner, 2001; Kaplan et al., 2011] (Figure 1a). Extensive deforestation began approximately 3000 years before present, becoming widespread by the start of the Common Era [Binford et al., 1987]. Pollen records indicate that large-scale forest conversion for agriculture extended far beyond the centers of the major empires [e.g., Anchukaitis and Horn, 2005]. Paleoclimatic analyses suggest the major time period of deforestation in the Maya polities of Mesoamerica occurred from the Middle Preclassic through the Late Classic, approximately 1000 B.C.E. until the 9th or 10th century C.E. [Binford et al., 1987; Wahl et al., 2006]. With the arrival of Europeans in the 15th and 16th centuries, indigenous populations declined by as much as 90% or more, leading to widespread land abandonment and afforestation through the time of the population nadir in the 17th century [Binford et al., 1987; Dobyns, 1966; Dull et al., 2010; Mueller et al., 2010] (Figure 1b). Notably, the pre-Columbian pattern of land use was likely quite different compared to the modern day distribution of agricultural land (Figure 1c), with the most intensive land use in the pre-Columbian era centered around the major population centers in southern Mexico and the Yucatán peninsula. To date, however, few studies have investigated the climatic consequences of pre-Columbian land cover change, with most research focused on the carbon cycle response [e.g., Dull et al., 2010; Kaplan et al., 2011].
The climatic implications of pre-Columbian deforestation are intriguing but, to date, OG10 is the only study to explicitly test the deforestation-drought hypothesis in Mesoamerica. Here, we conduct a new suite of climate model experiments to investigate the impact of pre-Columbian deforestation on drought in Mesoamerica, with implications for the drying that occurred during the Maya collapse. Our work advances the study of OG10 in several important ways: 1) we use reconstructed Kaplan et al., 2011, rather than idealized, land cover scenarios in our experiments, 2) we conduct explicit significance testing, and 3) we compare our model response against precipitation changes reconstructed from paleoclimate records in the region.

2. Materials and Methods

We conducted three model experiments using the Goddard Institute for Space Studies (GISS) climate model (ModelE, 1° horizontal resolution) with the goal of isolating the equilibrium climate response to prescribed land cover boundary conditions. All experiments were run with fixed sea surface temperatures (SSTs) and sea ice concentrations (averaged over 1876–1885 C.E.) [Rayner et al., 2003], as well as representative pre-industrial (1850 C.E.) climate forcings (solar, greenhouse gas concentrations, etc). The experiments were run for a total of 26 years; we allowed five years for these simulations to come to equilibrium, using the latter 21 years for our analyses. Model experiments were compared using a two sided Student’s t-test, with all insignificant differences (p > 0.05) masked out.

Each experiment is forced with a different land cover scenario, using data from the Kaplan et al. [2011, 2012, hereinafter KK10] anthropogenic land cover reconstruction. Our base control scenario uses natural forest and vegetation cover, with no anthropogenic land use (NATVEG). Our pre-Columbian run replaces the natural vegetation with estimates of anthropogenic land cover change, using the time period of most extensive pre-Columbian deforestation in the KK10 reconstruction (Figure 1a). DEFOREST therefore represents the epoch of maximum pre-Columbian land clearance, similar to conditions that would have existed during the Late Classic Maya Period. Comparing DEFOREST to NATVEG is our maximum effect comparison, allowing us to investigate the full potential climate response to the deforestation relative to a theoretical world with natural forest cover and no human land use. Our final experiment uses the reduced anthropogenic land cover from the Colonial population nadir (Figure 1b, REGROWTH), an interval of significant forest regrowth following Colonial-era population declines, but prior to renewed European landscape modification. The DEFOREST and REGROWTH simulations bracket the range of deforestation estimates for Mesoamerica over much of the Common Era, providing an additional comparison to examine the significance and magnitude of the climate response. Additional details on the climate model, our experiments, and land cover reconstruction can be found in auxiliary material.

3. Results

Deforestation (DEFOREST minus NATVEG) causes significant drying in Mesoamerica, co-located with the regions of most intensive land cover change in southern Mexico and the Yucatán peninsula. Annual precipitation decreases by 5%–15% (Figure 2a); over the Yucatán and southeastern Mexico, this drying is predominately driven by larger (10%–20%) reductions in late summer wet season precipitation (August–September, Figure 2b). Precipitation changes are muted, but still significant, when the DEFOREST experiment is compared to the REGROWTH simulation (Figure S3). In this second comparison, significant drying still occurs in the core of the Yucatán peninsula (5%–10% reduction in annual precipitation), a region where the forest cover has largely recovered in the REGROWTH experiment. Outside this region, however, substantial human land use is still present (Figure 1b) and the difference in precipitation between DEFOREST and REGROWTH is small and largely insignificant.

Figure 1. (a) An anthropogenic land cover reconstruction for the pre-Columbian period indicates widespread deforestation throughout southern Mexico and the Yucatán peninsula. (b) Widespread mortality following the European conquest led to as much as a 90% reduction in native populations in some regions, resulting in large scale land abandonment during the population nadir in the 16th and 17th centuries. (c) Compared to modern day land cover, pre-Columbian deforestation included much more significant forest loss in the central Yucatán.
In contrast with OG10, the drying in our deforestation experiment is not driven by the thermal mountain effect, but rather by reductions in available energy, similar to the mechanisms first explored for the Sahel drought in the late 20th century [Charney, 1975; Charney et al., 1977]. The shift from forest to crops increases the surface albedo (Figure S4a), reducing net solar radiation (Figure S4b) and net radiation at the surface (Figure 3a). The surface latent heat flux also declines (Figure 3b), driven by a combination of reduced energy availability, the shift from forests to crops with shallower roots and lower leaf area, and reductions in precipitation. Because of the net energy deficit, however, the change in latent heat flux is only partially compensated by increases in sensible heating (Figure 3c). With this radiative imbalance and reduction in latent heating, shallow convective cloud cover (below 700 hPa) is reduced over broad areas of Mesoamerica (Figure 4a) and precipitation is suppressed. Over the Yucatán peninsula, cloud cover is relatively unchanged, but the intensity of convective activity is diminished. Cloud top temperatures increase in the DEFOREST simulation over this region (Figure 4b), indicating lower elevation cloud tops, and total cloud water content is reduced (Figure 4c). Both changes are indicative of reduced convective activity consistent with the reduced precipitation (Figure 2b).

Deforestation levels in pre-Columbian Mesoamerica likely fluctuated with the ascent and decline of societies and populations from the time of the Maya until the European conquest. Our DEFOREST scenario, representing peak levels of pre-Columbian population and deforestation, is an analogue for the deforestation that would have occurred during the high population intervals, including the Late Classic Maya collapse (800 C.E.–950 C.E.). This provides an opportunity to compare our model precipitation response to empirical estimates of precipitation changes during the Maya collapse [e.g., Curtis et al., 1996; Hodell et al., 1995, 2005; Medina-Elizalde et al., 2010]. These estimates are derived primarily from lake and cave proxies, and several of these records have been synthesized in a recent study by Medina-Elizalde and Rohling [2012], who estimated that, during the Late Classic interval, precipitation over the Yucatán was reduced by 25%–40%. Using the full range of model comparisons (DEFOREST versus NATVEG and DEFOREST versus REGROWTH), our own experiments indicate that deforestation is capable of suppressing annual precipitation over the Yucatán peninsula by 5%–15%. Our results therefore suggest that Mesoamerican deforestation may have contributed 12.5% to 60% of the total drying estimated from the paleorecords.

4. Discussion and Conclusions

In their idealized (full grassland versus full forest) regional modeling study of Maya deforestation, OG10...
reported wet season precipitation reductions of 15%–30%,
although the short length of their simulations (5 years) pre-
cluded an assessment of statistical significance. Drying in
our experiments was smaller but statistically significant
(5%–15%), an expected result considering the much more
severe deforestation scenario used in the OG10 experiments.
Our study provides additional support for the general con-
cclusions of OG10, demonstrating with a new model, new
land cover scenarios, and paleoclimate data comparisons that
deforestation would have contributed to the overall drying
that occurred during the Maya collapse.

[12] Our results do not point to deforestation as the only or
primary cause of any single, specific drought in Meso-
america during the pre-Columbian era, and do not preclude
the influence of other factors [Hodell et al., 2005; Hunt and
Elliott, 2005]. Nor do our simulations solve one enigma of
the spatial patterns of Late Classic Maya Collapse [Dahlin,
2002], where the wetter southern lowland experienced
social and political ‘collapse’ before the more arid northern
Yucatán. Results from our experiments suggest, however,
that by biasing the climate to a drier mean state, deforesta-
tion in pre-Columbian Mesoamerica would have amplified
those droughts when they did occur, exacerbating existing
hydrologic deficits, and further contributing to climate-
related instabilities and disruptions to societies in the region.

[13] In our simulations, the most severe drought in the Maya
region is co-located with the dominant regional power centers
of the Terminal and Postclassic. Spatial patterns of land cover
and cultural change, however, were complex, asynchronous in
time, and varied in magnitude [Dunning and Beach, 2000;•
Dahlin; 2002; Mueller et al., 2010], almost certainly occurring
at finer spatiotemporal scales than either our climate model or
land cover reconstruction can resolve. Uncertainties also exist
in the estimates of land cover change. Pollen in lake sediment
cores suggest that the recovery of Mesoamerican forests fol-
lowing abandonment would have lasted many decades to
several centuries – Mueller et al. [2010], for example, esti-
mated 80 to 260 years in the Petén of Guatemala – although
the timing and magnitude of deforestation and regrowth would
have depended on the ecosystem and varied considerably from
polity to polity [Dunning and Beach, 2000; Dahlin, 2002;
Anchukaitis and Horn, 2005].

[14] Finally, we note that the modern day extent of deforesta-
tion (Figure 1c) in the region is significantly differ-
ent compared to the pre-Columbian pattern (Figure 1a).
This is especially true for the Yucatán where there are cur-
rently large expanses of intact forest. Our results suggest
that, should deforestation in this region expand in the future,
land cover change could again amplify drought in the region,
(a worrying prospect in light of recent, and expected future,
trends towards increased aridity [e.g., Seager et al., 2009;
Stahle et al., 2009].

[15] Acknowledgments. The authors thanks 2 anonymous reviewers
and the editor for providing comments that greatly improved the quality
of this paper. Lamont Contribution #7563. JOK was supported by Swiss
National Science Foundation professorship grant (PP0022_119049) and
FIRB project CASTANEA (RBID08LN7F).

[16] The Editor thanks Robert Oglesby for assisting in the evaluation of
this paper.

References

Anchukaitis, K. J., and S. P. Horn (2005), A 2000-year reconstruction of
forest disturbance from southern Pacific Costa Rica, Palaeoecogr.
Palaeoclimatol. Palaeoecol., 221(1–2), 35–54.
Binford, M. W., M. Brenner, T. J. Whitmore, A. Higuera-Gundy, E. S. Deevey,
and B. Leyden (1987), Ecosystems, paleoecology and human disturbance
Charney, J. (1975), Dynamics of deserts and drought in the Sahel, Q. J. R.
Charney, J. W. J. Quirk, S. H. Chow, and J. Kornfeld (1977), A Comparative
Curtis, J. H., D. A. Hodell, and M. Brenner (1996), Climate variability on
the Yucatán Peninsula (Mexico) during the past 3500 years, and implica-
tions for Maya cultural evolution, Quat. Res., 46(1), 37–47.
Dahlin, B. H. (2002), Climate change and the end of the Classic period in
Davies, S. J., S. E. Metcalfe, A. B. MacKenzie, A. J. Newton, G. H. Endfield,
and J. Farmer (2004), Environmental changes in the Zirahuén Basin,
Michoacán, Mexico, during the last 1000 years, J. Paleolimnol., 31(1),
77–98.
Denevan, W. M. (1992), The Pristine myth: The landscape of the Americas
Dobyns, H. F. (1966), An appraisal of techniques with a New Hemispheric
Dull, R. A. (2008), Unpacking El Salvador’s ecological predicament:
Theoretical templates and ‘long-view’ ecologies, Global Environ.


