Stable isotope evidence for palaeodiets in southern Turkmenistan during Historical period and Iron Age

Hervé Bocherens a,*, Marjan Mashkour b, Dorothee G. Drucker a,1, Issam Moussa a, Daniel Billiou c

a Institut des Sciences de l’Evolution, UMR 5554, Université Montpellier 2, case 064, place E. Bataillon, F-34095 Montpellier cedex 5, France
b Museum National d’Histoire Naturelle, Département d’Ecologie et Gestion de la Biodiversité – ESA 8045 et UMR 7041, 55, rue Buffon F-75005 Paris, France
c Laboratoire de Biogéochimie des Milieux Continentaux, I.N.A.P.G., F-78026 Thiverval-Grignon, France

Received 23 December 2002; received in revised form 24 June 2005; accepted 21 July 2005

Abstract

The subsistence patterns of Iron Age and Historical period humans from south-western Turkmenistan have been reconstructed using the carbon and nitrogen isotopic compositions of archaeological faunal and human bones. A qualitative comparison of the isotopic signatures points to a small proportion of ruminant meat and dairy in human diet for both periods. The ranges of proportions of dietary items yielded by a quantitative approach based on concentration dependent mixing models confirm the high proportions of plant food in the average diet, and show little change in the reconstructed diet for both periods. A comparison of results from zooarchaeological and isotopic approaches illustrates their complementarity in subsistence patterns reconstruction.

Keywords: Iron Age; Historical period; Subsistence; Turkmenistan; Collagen; Stable isotopes; δ13C; δ15N

1. Introduction

The determination of ancient human diet is always a difficult task. Humans can potentially consume a large variety of animal and plant food items, in almost any relative proportions. Due to differential preservation, plant material does not survive as frequently as animal bone in the archaeological record, thus biasing the diet reconstructed from archaeological organic remains towards meat intake. Moreover, even when archaeobotanical data are present, they may be difficult to interpret as remnants of food or fuel (e.g. [32,50]). The last two decades have witnessed the development of palaeodietary reconstruction through bone collagen carbon and nitrogen stable isotopic composition (e.g. see reviews in [2,6,20,25,68]). This approach provides individual dietary reconstruction for the last years before death, however biased in favour of protein-rich food items.

The combination of zooarchaeological and isotopic studies allows to define directly the isotopic signatures of the animal dietary resources, and to compare them with the observed isotopic signatures of humans from the same archaeological layers. A discrepancy between the conclusions of both investigating methods will point to the contribution of dietary resources other than the
animal proteins inferred from the bones. Such foodstuffs
that are not recorded in the archaeological material can
be tentatively identified by the knowledge of the ecolog-
ic variability in the study area.

When an ecosystem yields dietary resources with dis-

tinct isotopic signatures, it is possible to evaluate the
relative amount of different protein resources used by an-
cient populations through the isotopic signatures of bone
collagen (e.g. [1,37,38,61]). Indeed, bone collagen empha-
sises the isotopic signature of the protein fractions of the
diet [3,67]. Using mixing models with $n + 1$ dietary
resources when n isotopes are used, it has been possible
to attempt quantification of the relative contributions of
these different dietary resources. The first attempts of
modelling used linear mixing models (e.g. [44,63]). The
most recent advances incorporate uncertainties and con-
centration dependence in the mixing models (e.g.
[56,57]). So far, most studies using the advanced versions
of such models have aimed at reconstructing the diet of
modern omnivorous animals, such as bears (e.g.
[40,57,58]). The extension of such modelling approaches
to archaeological contexts provides an opportunity to
quantify the relative contributions of different dietary re-
sources for humans in ancient societies (e.g.
[12,22,23,52,54]). The goal of the present work is to re-
construct the diet of ancient people from south-western
Turkmenistan, an area still unexplored with stable iso-
otope biogeochemistry, using qualitative and quantititative
(mixing models) approaches.

The present study has been performed on archaeological
material from the Dehistan Plain, located in the
extreme south-western Turkmenistan adjacent to the Cas-
pian Sea which is today an arid and flat region (Fig. 1).
Archaeological evidence shows that this area has been
densely occupied since the Iron Age, around 1300 BC.
The plain is arid and the only water sources are the Atrak
and Sumbar rivers south and east, respectively. It is, there-
fore, likely that agricultural practices had to rely on inten-
sive irrigation systems [41]. It is usually considered that
demographic pressure in the Sumbar valley led to a west-
ward movement of people with necessary knowledge
about irrigation techniques [41]. Indeed, traces of ancient
irrigation webs are still visible on the surface of the plain,
suggesting an intense agricultural activity in the past.
In more eastern parts of southern Turkmenistan, at Geo-
skyur in the Tedzen valley, irrigation is linked to the cul-
tivation of cereals such as wheat and barley [43]. Recent
excavations in south-western Turkmenistan have yielded
relatively abundant faunal remains, which indicate the oc-
currence of pastoral activities mostly based on caprine
and bovine husbandry, with very few remains of hunted
animals [46]. For reconstructing the ancient subsistence
pattern in this region, it is necessary to assess the relative
importance of agricultural and pastoral practises, since
both have been evidenced, indirectly for agriculture and
directly for pastoralism.

2. Isotopic signatures in the ecological context
of southern Turkmenistan

2.1. Carbon-13

Carbon isotopic compositions (expressed as $\delta^{13}C$ values) in ecosystems reflect primarily the photosynthetic
pathways and environmental parameters of the plants
on the basis of the food webs. In terrestrial plants, the
two major photosynthetic pathways, i.e. the so-called
“C3” and “C4” pathways, lead to clearly different
isotopic discriminations. Both types of plants are ^{13}C-
depleted relative to their source of inorganic carbon,
atmospheric CO$_2$ with a $\delta^{13}C$ value around $-8\%_{oo}$, but
C$_4$-plants are much less depleted than C$_3$-plants
($\delta^{13}C = -27.1 \pm 2.0\%_{oo}$ and $\delta^{13}C = -13.1 \pm 1.2\%_{oo}$ for
C$_3$- and C$_4$-plants, respectively [53]). On a world-wide
scale, most C$_3$-plants are grasses from warm areas,
and they are distributed in regions where the growing
season is the warm one (monsoon system), whereas
C$_4$-plants are all the trees growing under any climatic
conditions, as well as herbaceous plants from temperate
and cold areas, where the growing season is cool. South-
ern Turkmenistan is located at the border between the
Euro-Siberian and the Irano-Turanian phytogeographic
zones [39], in a desertic climatic context [5]. In the Euro-
Siberian region, C$_4$-plants are extremely scarce [48]. In
the Irano-Turanian region, most plants are C$_3$ with
locally significant amounts of C$_4$ species which are hal-
ophytes adapted to saline environments [70]. Among
C$_3$-plants, some environmental conditions lead to dif-
ferent carbon isotopic compositions (e.g. [30,66]). In closed
forested environments, where the CO$_2$ available to understorey plants is ^{13}C-depleted relative to the general
atmosphere due to the contribution of CO$_2$ generated by
respiration and organic matter decomposition and
where light intensity is lower, plants exhibit $\delta^{13}C$ values
as low as or lower than $-28\%_{oo}$ (e.g. [13,14,49,69]). On
the other hand, water and saline stress environments
lead to less isotopic fractionation of carbon in C$_3$-plants,
which thus have $\delta^{13}C$ values as high as $-20\%_{oo}$ (e.g. [29]).

The carbon isotopic compositions of the plants are re-
lected in the tissues of their consumers, with an isotopic
shift which is mainly linked to the analysed tissue (e.g.
[17,21]). The average $\delta^{13}C$ value of an organism body is
similar to that of the average diet, but its different bio-
chemical fractions present consistently different carbon
isotopic compositions, due to fractionation during the
metabolic pathways [18]. For instance, carbohydrates

\[\delta^{13}X = \left(\frac{R_{sample}}{R_{standard}} - 1 \right) \times 1000 \%_{oo}, \]

where X stands for C or N, E stands for 13 or 15 respectively, and R stands for the isotopic ratios
$^{13}C/^{12}C$ and $^{15}N/^{14}N$, respectively. The standard, internationally defined, is a marine carbonate (PDB) for carbon and atmospheric nitrogen (AIR) for nitrogen.
present globally a similar δ^{13}C value than the whole body, whereas lipids are depleted (around 4‰) and proteins are enriched (around 2‰) relative to the whole body [21]. The tissue of interest for the zooarchaeologist is mostly collagen, in bone and dentine, due to its potential for long-term preservation (e.g. [9,10,35]). The actual value of the isotopic shift between the carbon isotopic composition of diet and that of collagen is crucial for interpreting the measured values. It has been investigated through laboratory experiments (e.g. [3,21,33,34,67]) as well as in the field (e.g. [2,42,59,68,69]). Recently some very well controlled dietary experiments on rodents have obtained key results regarding the relationship between dietary and measured carbon isotopic compositions [3,67]. Both studies have clearly demonstrated that collagen presents δ^{13}C values directly linked to those of the protein fraction of the diet. In the case where all the biochemical fractions, i.e. lipids, carbohydrates and proteins, come from an isotopically homogeneous source, collagen is enriched around 5‰ relative to the average diet. Controlled diet experiments have provided difference values between δ^{13}C of collagen and muscle of +2.7 and +3.6‰ (e.g. [26,67]). In the field, differences measured between the δ^{13}C values of collagen from preys and of collagen from their predators range from 1.0 to 2.4‰ [7].

2.2. Nitrogen-15

Contrarily to carbon, a significant enrichment occurs between an organism’s diet and its body, leading to δ^{15}N.
values 3–5%o higher in the body than in the average diet [7,51,60,62]. This trophic isotopic effect leads to higher δ15N values in carnivore collagen relative to that of their preys. Independently of dietary factors, a relationship has been found between herbivore δ15N values and annual rainfall: collagen δ15N values increase with aridity [28,31,64,65]. Thus collagen δ15N cannot be used as an absolute proxy for diet. Local conditions, such as soil acidity or salinity, can also change plant δ15N values [45,55], thus shifting isotopically the whole food web [59]. Arid environments such as Turkmenistan are likely to lead to a rather large range of δ13C and δ15N values in plants and herbivore tissues, similar to what has been observed in northern Iran [11]. Such variability will complicate the palaeodietary reconstruction of ancient human populations, since a given dietary item will not be characterised by a stable and recognisable range of isotopic signature.

3. Material and methods

The studied bones are yielded from Geoktchik Depe with two chronological periods, Iron Age, locally known as Archaic Dehistan (1300 BC) and Historical period (Sasanian and beginning of Islamic period, 6–7th century AD) and Misrijan, with archaeological remains from Historical period (Ilkhanid period, 11–12th century AD), 15 km distant from each other in the Dehistan Plain (Fig. 1). The bone material consists of human and animal specimens from a large suite of species since the isotopic background in Turkmenistan is almost non-existent. Both human remains from Geoktchik Depe have been recovered alongside the animal bones during the excavation, whereas the juvenile human from Misrijan has been excavated from a grave. In addition, animal bones of domestic herbivores (caprine, cattle, cameldid, donkey), wild herbivores (red deer, gazella, saiga), wild carnivores (Felidae indet.), and omnivores (domestic pigs and wild boars, dogs) have been investigated (Table 1). Collagen extraction and isotopic analysis has been performed at the Laboratoire de Biogéochimie Isotopique, University of Paris 6, using the routine protocol described elsewhere [9]. The analytical precisions are 0.1%o for δ13C values and 0.2%o for δ15N values.

4. Results

The chemical quality of the collagen is excellent. Extraction yields are high, ranging from 16.5 to 182.8 mg g⁻¹. Almost all collagen exhibit %C above 40% and %N above 14%, and all C/N are within the same range than modern collagen, 2.9–3.6 (Table 1), showing no clue of significant alteration of in vivo isotopic signatures [19].

The specimens from all archaeological contexts have been combined, since the number of samples available for each archaeological levels in the Dehistan Plain is small and the climatic conditions are relatively stable during the studied period [15]. The specimens have been sorted into six trophic/environmental categories, namely domestic herbivores (DH), wild herbivores (WH), wild carnivores (WC), dogs (D), suids (S) and humans (H) (Table 1). The δ13C and δ15N of domestic herbivores exhibit a large range of variations, ranging from −19.8 to −11.9%o and from 5.4 to 15.1%o for δ13C and δ15N values, respectively. Wild herbivores present δ13C values ranging from −20.7 to −15.2%o, whereas their δ15N values range from 5.0 to 12.9%o. One wild felid exhibits a δ13C value of −16.5%o and a δ15N value of 16.4%o, clearly higher than those of wild herbivores (Table 1). One dog exhibits a δ13C value of −18.3%o and a δ15N value of 13.7%o, whereas suids present δ13C values ranging from −20.7 to −19.8%o and δ15N values ranging from 12.4 to 13.2%o. Human collagen δ13C values are among the lowest measured in this study, ranging from −20.2 to −19.5%o, whereas their δ15N range from 13.6 to 14.8%o.

5. Discussion

Only species consumed by humans are taken into account for the dietary study. No skeletal part of red deer was found in the archaeological excavation except the analysed shed antler, which is most likely corresponding to a trophy or some raw material for handicraft, and was most probably collected in a more humid area. The red deer specimen was thus excluded from the dietary discussion. Cut marks are absent on the recovered bones of donkeys, showing no evidence that this species was consumed; therefore, these specimens were ignored in the dietary discussion. Meat intake of ruminants, i.e. caprine, cattle and camel is documented through cut marks on bones from these species and through kill-off patterns. In addition, consumption of dairy products is expected from kill-off patterns for caprine and cattle, and the traditional consumption of fermented camel milk (tchal) in Central Asia strongly suggests that camel milk was most probably consumed in the past.

5.1. Qualitative dietary reconstruction

It is possible to infer the relative amounts of different foodstuffs that have been consumed by ancient human beings knowing the isotopic differences between a consumer and its dietary items, and knowing the isotopic compositions of the possibly consumed dietary items. A rough estimate can be deduced by comparing the isotopic signatures of the humans and those of different species.
<table>
<thead>
<tr>
<th># Excavation</th>
<th>Age</th>
<th>Period</th>
<th># Lab</th>
<th>Taxon</th>
<th>Skeletal element</th>
<th>Trophic attribution</th>
<th>Yield (mg g⁻¹)</th>
<th>%C</th>
<th>%N</th>
<th>C/N</th>
<th>δ¹³C (‰)</th>
<th>δ¹⁵N (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 110 bottom</td>
<td>11–12th c.</td>
<td>Historical Misrijan</td>
<td>MS100</td>
<td>Caprine</td>
<td>Mandible</td>
<td>DH</td>
<td>71.7</td>
<td>43.9</td>
<td>16.1</td>
<td>3.2</td>
<td>–19.4</td>
<td>7.1</td>
</tr>
<tr>
<td>MS 101</td>
<td>11–12th c.</td>
<td>Historical Misrijan</td>
<td>MS800</td>
<td>Caprine</td>
<td>Tibia</td>
<td>DH</td>
<td>163.2</td>
<td>44.8</td>
<td>16.4</td>
<td>3.2</td>
<td>–17.9</td>
<td>8.8</td>
</tr>
<tr>
<td>MS 101</td>
<td>6–7th c.</td>
<td>Historical Geoktchik Depe</td>
<td>GD2000</td>
<td>Cattle</td>
<td>Molar</td>
<td>DH</td>
<td>168.4</td>
<td>45.2</td>
<td>16.4</td>
<td>3.2</td>
<td>–16.9</td>
<td>10.8</td>
</tr>
<tr>
<td>GD 95/441</td>
<td>6–7th c.</td>
<td>Historical Geoktchik Depe</td>
<td>GD9000</td>
<td>Cattle</td>
<td>Calcaneus</td>
<td>DH</td>
<td>181.2</td>
<td>43.4</td>
<td>16.0</td>
<td>3.2</td>
<td>–17.1</td>
<td>15.1</td>
</tr>
<tr>
<td>MS 110</td>
<td>11–12th c.</td>
<td>Historical Misrijan</td>
<td>MS700</td>
<td>Caprine</td>
<td>Mandible</td>
<td>DH</td>
<td>139.3</td>
<td>44.7</td>
<td>16.4</td>
<td>3.2</td>
<td>–16.3</td>
<td>8.9</td>
</tr>
<tr>
<td>MS 111</td>
<td>11–12th c.</td>
<td>Historical Misrijan</td>
<td>MS600</td>
<td>Cattle</td>
<td>Metacarpal</td>
<td>DH</td>
<td>132.2</td>
<td>43.8</td>
<td>15.6</td>
<td>3.2</td>
<td>–17.8</td>
<td>8.2</td>
</tr>
<tr>
<td>GD 96/121</td>
<td>6–7th c.</td>
<td>Historical Geoktchik Depe</td>
<td>GD4000</td>
<td>Donkey</td>
<td>Humerus</td>
<td>DH</td>
<td>138.0</td>
<td>45.0</td>
<td>16.2</td>
<td>3.2</td>
<td>–19.8</td>
<td>5.4</td>
</tr>
<tr>
<td>MS 118</td>
<td>12th c.</td>
<td>Historical Misrijan</td>
<td>MS900</td>
<td>Red deer</td>
<td>Antler</td>
<td>WH</td>
<td>40.5</td>
<td>44.1</td>
<td>16.1</td>
<td>3.2</td>
<td>–20.7</td>
<td>5.0</td>
</tr>
<tr>
<td>GD 96/126</td>
<td>6–7th c.</td>
<td>Historical Geoktchik Depe</td>
<td>GD100000</td>
<td>Donkey</td>
<td>Mandible</td>
<td>WH</td>
<td>111.8</td>
<td>43.0</td>
<td>15.7</td>
<td>3.2</td>
<td>–17.0</td>
<td>11.3</td>
</tr>
<tr>
<td>GD 96/121</td>
<td>11–12th c.</td>
<td>Historical Misrijan</td>
<td>MS110000</td>
<td>Gazella</td>
<td>Horncore</td>
<td>WH</td>
<td>116.8</td>
<td>45.2</td>
<td>16.6</td>
<td>3.2</td>
<td>–16.9</td>
<td>8.0</td>
</tr>
<tr>
<td>MS 110 #144</td>
<td>11–12th c.</td>
<td>Historical Misrijan</td>
<td>MS1100</td>
<td>Saiga</td>
<td>Humerus</td>
<td>WH</td>
<td>127.0</td>
<td>43.8</td>
<td>15.9</td>
<td>3.2</td>
<td>–15.2</td>
<td>12.5</td>
</tr>
<tr>
<td>GD 96/121</td>
<td>6–7th c.</td>
<td>Historical Geoktchik Depe</td>
<td>GD6000</td>
<td>Suid (boar?)</td>
<td>Mandible</td>
<td>S</td>
<td>54.2</td>
<td>39.8</td>
<td>14.4</td>
<td>3.2</td>
<td>–19.8</td>
<td>13.2</td>
</tr>
<tr>
<td>GD 96/125</td>
<td>6–7th c.</td>
<td>Historical Geoktchik Depe</td>
<td>GD6000</td>
<td>Suid (boar?)</td>
<td>Mandible</td>
<td>S</td>
<td>107.0</td>
<td>43.0</td>
<td>15.7</td>
<td>3.2</td>
<td>–20.3</td>
<td>13.1</td>
</tr>
<tr>
<td>GD 96/126</td>
<td>6–7th c.</td>
<td>Historical Geoktchik Depe</td>
<td>GD4000</td>
<td>Felidae indet.</td>
<td>Humerus</td>
<td>WC</td>
<td>133.2</td>
<td>43.8</td>
<td>15.8</td>
<td>3.2</td>
<td>–16.5</td>
<td>16.4</td>
</tr>
<tr>
<td>MS 101</td>
<td>11–12th c.</td>
<td>Historical Misrijan</td>
<td>MS1200</td>
<td>Dog</td>
<td>Mandible</td>
<td>D</td>
<td>136.4</td>
<td>45.1</td>
<td>16.3</td>
<td>3.2</td>
<td>–18.3</td>
<td>13.7</td>
</tr>
<tr>
<td>MS 101</td>
<td>11–12th c.</td>
<td>Historical Misrijan</td>
<td>MS2000</td>
<td>Human (6/7 yr)</td>
<td>Mandible</td>
<td>H</td>
<td>143.5</td>
<td>45.0</td>
<td>16.5</td>
<td>3.2</td>
<td>–19.5</td>
<td>14.8</td>
</tr>
<tr>
<td>GD 95/434</td>
<td>ca. 13th bc</td>
<td>Iron Age Geoktchik Depe</td>
<td>GD8000</td>
<td>Caprine</td>
<td>Mandible</td>
<td>DH</td>
<td>125.9</td>
<td>43.7</td>
<td>15.8</td>
<td>3.2</td>
<td>–16.5</td>
<td>8.4</td>
</tr>
<tr>
<td>GD 95/454</td>
<td>ca. 13th bc</td>
<td>Iron Age Geoktchik Depe</td>
<td>GD10000</td>
<td>Caprine</td>
<td>Radius</td>
<td>DH</td>
<td>156.9</td>
<td>42.7</td>
<td>15.7</td>
<td>3.2</td>
<td>–11.9</td>
<td>10.6</td>
</tr>
<tr>
<td>GD 95/454</td>
<td>ca. 13th bc</td>
<td>Iron Age Geoktchik Depe</td>
<td>GD70000</td>
<td>Donkey</td>
<td>Calcaneus</td>
<td>I</td>
<td>182.8</td>
<td>42.5</td>
<td>15.6</td>
<td>3.2</td>
<td>–18.6</td>
<td>11.4</td>
</tr>
<tr>
<td>GD 95/454</td>
<td>ca. 13th bc</td>
<td>Iron Age Geoktchik Depe</td>
<td>GD90000</td>
<td>Donkey</td>
<td>Mandible</td>
<td>DH</td>
<td>57.0</td>
<td>41.8</td>
<td>15.3</td>
<td>3.2</td>
<td>–18.3</td>
<td>11.5</td>
</tr>
<tr>
<td>GD 96/20</td>
<td>ca. 13th bc</td>
<td>Iron Age Geoktchik Depe</td>
<td>GD50000</td>
<td>Gazella</td>
<td>Talus</td>
<td>WH</td>
<td>28.1</td>
<td>41.4</td>
<td>15.2</td>
<td>3.2</td>
<td>–17.2</td>
<td>11.1</td>
</tr>
<tr>
<td>GD 96/466</td>
<td>ca. 13th bc</td>
<td>Iron Age Geoktchik Depe</td>
<td>GD8000</td>
<td>Suid (boar?)</td>
<td>Metatarsal</td>
<td>S</td>
<td>61.7</td>
<td>42.9</td>
<td>15.7</td>
<td>3.2</td>
<td>–20.6</td>
<td>12.4</td>
</tr>
<tr>
<td>GD 94/8,25-8,80</td>
<td>ca. 13th bc</td>
<td>Iron Age Geoktchik Depe</td>
<td>GD9000</td>
<td>Pig</td>
<td>Mandible</td>
<td>S</td>
<td>103.5</td>
<td>40.7</td>
<td>14.9</td>
<td>3.2</td>
<td>–20.7</td>
<td>13.1</td>
</tr>
<tr>
<td>GD 94/303</td>
<td>ca. 13th bc</td>
<td>Iron Age Geoktchik Depe</td>
<td>GD5000</td>
<td>Human</td>
<td>Mandible</td>
<td>H</td>
<td>16.5</td>
<td>25.9</td>
<td>9.3</td>
<td>3.2</td>
<td>–20.1</td>
<td>14.2</td>
</tr>
<tr>
<td>GD 95/433</td>
<td>ca. 13th bc</td>
<td>Iron Age Geoktchik Depe</td>
<td>GD2000</td>
<td>Human</td>
<td>Talus</td>
<td>H</td>
<td>61.2</td>
<td>39.4</td>
<td>14.3</td>
<td>3.2</td>
<td>–20.2</td>
<td>13.6</td>
</tr>
</tbody>
</table>

Species names are the following: Sheep = *Ovis aries*, cattle = *Bos taurus*, dromedary = *Camelus dromedarius*, donkey = *Equus asinus*, red deer = *Cervus elaphus*, gazella = *Gazella subgutturosa*, saiga = *Saiga tatarica*, dog = *Canis familiaris*, human = *Homo sapiens*, suid = *Sus scrofa*. Abbreviation keys for trophic attributions are the following: D = dog, DH = domestic herbivore, H = human, S = suid, WH = wild herbivore, WC = wild carnivore.
animal species from the same environment. In the present study, human collagen $\delta^{13}C$ values are among the most negative measured in all the analysed specimens, ranging from -20.2 to $-19.5\%_{oo}$, whereas their $\delta^{15}N$ range from 13.6 to 14.8\% (Fig. 2). These isotopic values are too negative to indicate a high proportion of herbivore meat or dairy protein in their diet. The $\delta^{13}C$ values of humans are very similar to those of the analysed suids, wild or domestic pigs of the genus Sus, and their $\delta^{15}N$ values are slightly higher. Pigs are able to eat various dietary items, but they prefer C_3-plants, i.e. fruits, seeds, tubers and other fleshy parts. In the studied area, much of cultivated plants are C_3-plants, including cereals such as wheat and barley, legumes and vegetables. Only millet, reported from the Bronze Age of Bactriane [4], could be cultivated and provide C_4 proteins. There is no need to put forward fish in the diet, since the addition of freshwater and marine fish in human diet would have at least increased the $\delta^{15}N$ values, and possibly shifted the $\delta^{13}C$ values as well [6]. This result is in agreement with the absence of fish remains in the site [46], although Caspian Sea is 80 km away. Finally, humans seemed to rely mostly on cultivated C_3 plants, with a limited addition of herbivore proteins such as meat or dairy.

5.2. Quantitative dietary reconstruction

A more quantitative approach has been attempted, using the mixing models developed by Phillips and collaborators [40,56,57]. Such models allow the calculation of the dietary contribution of each food type to the overall isotopic signature of the human diet. The mixing models are based on the assumption that the isotopic composition of the diet is a linear combination of the isotopic compositions of the different food types. The isotopic composition of each food type is represented by a set of parameters, such as the $\delta^{13}C$ and $\delta^{15}N$ values of collagen. The mixing model is solved iteratively, using an optimization algorithm, to find the set of parameters that best fit the observed isotopic composition of the human diet. The results of the mixing model are presented in Table 2, which shows the average isotopic signatures of ruminant meat during the Historical period using two modes of calculation, one based on NISP, the other based on percent meat weight.

Table 2

<table>
<thead>
<tr>
<th>Taxa</th>
<th>NISP</th>
<th>%NISP</th>
<th>$\delta^{13}C$</th>
<th>$\delta^{15}N$</th>
<th>Weight</th>
<th>%Weight</th>
<th>$\delta^{13}C$</th>
<th>$\delta^{15}N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle (Bos taurus)</td>
<td>479</td>
<td>28.7</td>
<td>-16.0</td>
<td>13.0</td>
<td>18 533</td>
<td>52.7</td>
<td>-16.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Domestic caprines (Ovis or Capra)</td>
<td>1074</td>
<td>64.4</td>
<td>-18.7</td>
<td>8.0</td>
<td>13 159</td>
<td>37.4</td>
<td>-18.7</td>
<td>8.0</td>
</tr>
<tr>
<td>Camel (Camelus dromedarius)</td>
<td>31</td>
<td>1.9</td>
<td>-17.0</td>
<td>8.6</td>
<td>1350</td>
<td>3.8</td>
<td>-17.0</td>
<td>8.6</td>
</tr>
<tr>
<td>Wild herbivores</td>
<td>84</td>
<td>5.0</td>
<td>-16.5</td>
<td>12.2</td>
<td>2137</td>
<td>6.1</td>
<td>-16.5</td>
<td>12.2</td>
</tr>
<tr>
<td>Total ruminants (average collagen)</td>
<td>1668</td>
<td>100</td>
<td>-17.8</td>
<td>9.7</td>
<td>35 179</td>
<td>100</td>
<td>-17.1</td>
<td>10.9</td>
</tr>
<tr>
<td>Total ruminants (average meat)</td>
<td>1668</td>
<td>100</td>
<td>-20.8</td>
<td>9.7</td>
<td>35 179</td>
<td>100</td>
<td>-20.1</td>
<td>10.9</td>
</tr>
</tbody>
</table>
of the percentage of three dietary items when the isotopic compositions of two chemical elements are available, as it is the case in the present study. This approach has primarily been developed to deal with modern food webs, where the isotopic signatures of different food resources are directly available (e.g. [24,27,36]). Although the isotopic signatures of food resources may be more difficult to determine accurately in archaeological contexts, this approach may be used for ancient food webs (e.g. [12,22,23,52,54]). In the present case, the archaeological context and the preliminary interpretation of the isotopic results leads us to consider the following three dietary items with different carbon and nitrogen isotopic compositions: ruminant proteins (dairy and meat = pole A), suid meat (pole B), and plant food (pole C). The calculation of the relative contribution of these food resources has been performed using the spreadsheet available at http://www.epa.gov/wed.pages/models.htm [57]. Three kinds of parameters have to be settled in order to be able to use such models. The first one is the isotopic composition of the different food resources, i.e. ruminant dairy and meat (A), suid meat (B) and plant food (C), for the different considered time periods. No direct measurement is possible for such values. Previous archaeological studies using such mixing models to reconstruct palaeodiets used collagen isotopic signatures as proxies of meat for the same animals (e.g. [23,54]). They used either direct measurement on fossil plant remains [54] or they deduced the isotopic values of plants from those of selected herbivores [52]. First of all, the data from both historical levels, sasanian and islamic, have been gathered to have enough measurements before attempting the quantitative palaeodietary reconstruction. Several ruminant species have been consumed: cattle, sheep, goat and camel. The isotopic compositions of several specimens from these species have been measured in the present study, and differences appear between species and within species (Table 1). It is thus necessary to aggregate the data to obtain one average value for this dietary item. For a given species an average isotopic value has been calculated when several bones from this species have been analysed in a given archaeological context. Averaging the isotopic data from different ruminant species has been performed in two ways: one way is based on the percentage of remains (%NISP) for each species. However this way of quantification is biased due to fragmentation. An other way of averaging is based on the weight of bones from each species, which is a satisfactory proxy for weight of meat [16]. Both modes of calculation have been used in order to generate two different isotopic values for the dietary pole corresponding to ruminants (Tables 2 and 3). The main difference between both modes of calculation is a higher percentage for cattle using the meat weight, due to the larger size of cattle relatively to sheep and goats. Since cattle exhibit more positive $\delta^{15}N$ values than caprines, the $\delta^{15}N$ value of ruminant proteins is higher when using meat weight rather than NISP (Tables 2 and 3). Once an average isotopic composition has been calculated for collagen, a value for meat and dairy has been deduced, using the known isotopic shifts between collagen and muscle, on average 3_{coll} (review in Ref. [8]). For dairy products, milk presents a similar isotopic composition than the bulk proteins, and there is no evidence that fermentation leads to changes in the isotopic composition of cheese (I. Moussa, unpublished data). An average value has been calculated for suid collagen for each period, and then converted into a meat isotopic value using the same isotopic shift than between collagen and muscle of ruminants, i.e. 3_{mm} and 0_{mm} for

Table 3
Average isotopic signatures of ruminant meat during the Iron Age period using two modes of calculation, one based on NISP, the other based on percent meat weight

<table>
<thead>
<tr>
<th>Taxa</th>
<th>NISP</th>
<th>%NISP</th>
<th>$\delta^{13}C$</th>
<th>$\delta^{15}N$</th>
<th>Weight</th>
<th>%Weight</th>
<th>$\delta^{13}C$</th>
<th>$\delta^{15}N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle (Bos taurus)</td>
<td>128</td>
<td>29.5</td>
<td>−16.0</td>
<td>13.0</td>
<td>3398</td>
<td>54.1</td>
<td>−16.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Domestic caprines (Ovis or Capra)</td>
<td>275</td>
<td>63.4</td>
<td>−16.5</td>
<td>8.4</td>
<td>2431</td>
<td>38.7</td>
<td>−16.5</td>
<td>8.4</td>
</tr>
<tr>
<td>Camel (Camelus dromedarius)</td>
<td>2</td>
<td>0.4</td>
<td>−11.9</td>
<td>10.6</td>
<td>242</td>
<td>3.9</td>
<td>−11.9</td>
<td>10.6</td>
</tr>
<tr>
<td>Wild herbivores</td>
<td>29</td>
<td>6.7</td>
<td>−17.2</td>
<td>11.1</td>
<td>210</td>
<td>3.3</td>
<td>−17.2</td>
<td>11.1</td>
</tr>
<tr>
<td>Total ruminants (average collagen)</td>
<td>434</td>
<td>100</td>
<td>−16.4</td>
<td>9.9</td>
<td>6281</td>
<td>100</td>
<td>−16.1</td>
<td>11.1</td>
</tr>
<tr>
<td>Total ruminants (average meat)</td>
<td>19.4</td>
<td>9.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−19.1</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Table 4
Average isotopic signatures of the three dietary poles used in the linear mixing models during the Historical period

<table>
<thead>
<tr>
<th>Calculation mode</th>
<th>I ($\delta^{13}C$, $\delta^{15}N$)</th>
<th>II ($\delta^{13}C$, $\delta^{15}N$)</th>
<th>III ($\delta^{13}C$, $\delta^{15}N$)</th>
<th>IV ($\delta^{13}C$, $\delta^{15}N$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: ruminant meat</td>
<td>(−20.8, 9.7)</td>
<td>(−20.8, 9.7)</td>
<td>(−20.1, 10.9)</td>
<td>(−20.1, 10.9)</td>
</tr>
<tr>
<td>B: pig meat</td>
<td>(−23.1, 13.2)</td>
<td>(−23.1, 13.2)</td>
<td>(−23.1, 13.2)</td>
<td>(−23.1, 13.2)</td>
</tr>
<tr>
<td>C: plant food</td>
<td>(−25.1, 10.2)</td>
<td>(−25.1, 8.2)</td>
<td>(−25.1, 10.2)</td>
<td>(−25.1, 8.2)</td>
</tr>
</tbody>
</table>

For calculation modes I and II, %NISP was used for ruminant meat, a fractionation factor of 3_{mm} and 5_{mm} were used between pig and plant $\delta^{15}N$ values for mode I and mode II, respectively. For calculation modes III and IV, %bone weight was used for ruminant meat, a fractionation factor of 3_{mm} and 5_{mm} were used between pig and plant $\delta^{15}N$ values for mode III and mode IV, respectively.
Table 5
Average isotopic signatures of the three dietary poles used in the linear mixing models during the Iron Age

<table>
<thead>
<tr>
<th>Calculation mode</th>
<th>I ($\delta^{13}C$, $\delta^{15}N$)</th>
<th>II ($\delta^{13}C$, $\delta^{15}N$)</th>
<th>III ($\delta^{13}C$, $\delta^{15}N$)</th>
<th>IV ($\delta^{13}C$, $\delta^{15}N$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: ruminant meat</td>
<td>(-19.4, 9.9)</td>
<td>(-19.4, 9.9)</td>
<td>(-19.1, 11.1)</td>
<td>(-19.1, 11.1)</td>
</tr>
<tr>
<td>B: pig meat</td>
<td>(-23.6, 12.7)</td>
<td>(-23.6, 12.7)</td>
<td>(-23.6, 12.7)</td>
<td>(-23.6, 12.7)</td>
</tr>
<tr>
<td>C: plant food</td>
<td>(-25.6, 9.7)</td>
<td>(-25.6, 7.7)</td>
<td>(-25.6, 9.7)</td>
<td>(-25.6, 7.7)</td>
</tr>
</tbody>
</table>

For calculation modes, see legend of Table 4.

Fig. 3. Examples of concentration dependent mixing models using calculation modes III and IV for Iron Age humans. The grey rectangles correspond to the possible isotopic signatures of the average diet deduced from the isotopic compositions of human bone collagen. The possible range of proportions corresponds to the intersection between those rectangles and the concentration-weighted mixing triangle. The carbon and nitrogen concentrations for terrestrial meat and terrestrial plants presented in Table 1 by Phillips and Koch [57] have been used.
$\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values, respectively. The determination of plant food isotopic composition is more complicated. Contrarily to the Neolithic sites from Slovenia [54], it is not possible to use isotopic measurements performed on fossil plants from the same site in the case of Dehistan Plain. Using modern plants from the same area might be misleading, since plant species different than the modern ones might have been cultivated during ancient times. Moreover, since the nitrogen isotopic composition of plants is affected by local conditions, they are unpredictable for plants from the past. Following Newsome and collaborators [52], we used the isotopic signatures of the collagen of an animal eating the same type of plants than the humans in order to calculate the average isotopic composition of consumed plants. The animal that provides the closest estimate in this study is domestic or wild pig. Indeed, its diet is mainly based on C$_3$ plants such as seeds, fruits, rhizomes, most probably similar to those consumed by humans. We consider that grazers would not be a good choice, since these herbivores consume wild herbaceous plants that do not enter directly into the human diet. Finally, it is necessary to calculate the average food resource using the average isotopic composition of human bone collagen. The isotopic shift is $5\%_{\text{in}}$ for $\delta^{13}\text{C}$ values, but the isotopic shift for $\delta^{15}\text{N}$ values varies according to different authors, ranging from 3 to $5\%_{\text{pp}}$ (review in [7]). These extreme enrichment values for $\delta^{15}\text{N}$ values have been tested in this study, in a similar way than other palaeodietary studies using mixing models [12, 23]. Finally, due to the different calculation methods used for the ruminant food products and the plant food material, 4 different isotopic averages are presented for each period (Tables 4 and 5).

Fig. 4. Summary of the possible range of proportions for three dietary poles in the diet of archaeological humans for south-western Turkmenistan.

Table 6

Range of proportions of different dietary poles in the different humans according to the mode of calculation

<table>
<thead>
<tr>
<th></th>
<th>I (%)</th>
<th>II (%)</th>
<th>III (%)</th>
<th>IV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human MS200 (historical)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A: 5.5 → 12.2</td>
<td>A: 3.4 → 10.7</td>
<td>A: 6.2 → 10.5</td>
<td>A: 3.8 → 10.4</td>
<td></td>
</tr>
<tr>
<td>B: 0 → 14.7</td>
<td>B: 3.2 → 19.3</td>
<td>B: 0 → 10.8</td>
<td>B: 0 → 17.0</td>
<td></td>
</tr>
<tr>
<td>C: 79.8 → 87.8</td>
<td>C: 77.3 → 86.1</td>
<td>C: 83.0 → 89.7</td>
<td>C: 79.2 → 89.6</td>
<td></td>
</tr>
<tr>
<td>Human GD5000 (Iron Age)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A: 4.0 → 7.0</td>
<td>A: 2.1 → 6.5</td>
<td>A: 4.7 → 6.6</td>
<td>A: 2.4 → 6.6</td>
<td></td>
</tr>
<tr>
<td>B: 0 → 9.6</td>
<td>B: 1.5 → 15.5</td>
<td>B: 0 → 6.6</td>
<td>B: 0 → 14.1</td>
<td></td>
</tr>
<tr>
<td>C: 86.4 → 93.0</td>
<td>C: 82.4 → 92.0</td>
<td>C: 88.7 → 93.3</td>
<td>C: 83.5 → 93.3</td>
<td></td>
</tr>
<tr>
<td>Human GD20000 (Iron Age)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A: 4.2 → 5.6</td>
<td>A: 2.6 → 5.6</td>
<td>A: 4.8 → 5.3</td>
<td>A: 2.9 → 5.3</td>
<td></td>
</tr>
<tr>
<td>B: 0 → 4.2</td>
<td>B: 0 → 9.5</td>
<td>B: 0 → 1.7</td>
<td>B: 0 → 8.1</td>
<td></td>
</tr>
<tr>
<td>C: 91.6 → 94.4</td>
<td>C: 87.9 → 94.4</td>
<td>C: 93.5 → 94.7</td>
<td>C: 89.0 → 94.7</td>
<td></td>
</tr>
</tbody>
</table>

Figures in bold correspond to the possible extreme proportions using %NISP (modes I and II) or bone weight (modes III and IV) for ruminant meat (dietary pole A).
pole that is consistent with the calculated average diet of the each human was calculated (Tables 5 and 6). We considered separately the extreme values considering the NISP and meat weight estimations. The last method is more realistic as long as animal proteins are consumed as meat but it is not possible to quantify in the same way the consumption of dairy products. However, choosing NISP instead of meat weight has little influence on the final results, probably due to the small proportion of ruminant in the global diet of humans in the studied case. The results are, therefore, considered significant in terms of palaeodiets. They clearly show that plant food is dominant in the three studied human individuals, for historical and Iron Age contexts. All three humans are relatively similar in spite of their chronological difference (Fig. 4). In all cases, plants are dominant, pig meat is optional but ruminant products need to be included in the diet in order to fit the isotopic results. It seems that the contribution of plants is slightly higher in the Iron Age specimens than in the historical one but it is premature to generalise based on so few individuals. Further studies with more human individuals in the region may find a meaningful link between this difference and the intensity of agricultural practises during Iron Age as documented by archaeological fieldwork.

Zooarchaeological and isotopic results can be compared through the relative abundance of pig versus ruminants in the faunal remain and in the reconstructed diet. The prevalence of ruminants in the faunal assemblages is more important for Historical periods than for Iron Age (Table 7). The minimum contribution of ruminant meat and dairy is higher in the human from Historical period than for both Iron Age individuals. The results from zooarchaeological analysis and isotopic dietary reconstruction are thus in accordance on this aspect of the dietary regimen in ancient Turkmenistan.

<table>
<thead>
<tr>
<th>Table 7</th>
<th>Relative proportions of ruminants and suids during Historical period and Iron Age, based on NISP and meat weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ruminant</td>
</tr>
<tr>
<td>Historical period (NISP)</td>
<td>1668</td>
</tr>
<tr>
<td>Historical period (estimated meat weight)</td>
<td>35179</td>
</tr>
<tr>
<td>Iron Age (NISP)</td>
<td>434</td>
</tr>
<tr>
<td>Iron Age (estimated meat weight)</td>
<td>6281</td>
</tr>
</tbody>
</table>

6. Conclusion

The kill-off patterns established for south-western Turkmenistan indicate that husbandry was mostly oriented towards meat production although the human individuals analysed in this study mostly rely on cultivated C3 plants, with only a limited addition of proteins from ruminants. This study demonstrates the possible complementarity of zooarchaeology and isotopic approaches for palaeodietary reconstruction, since each method reflects a different chronological and demographic scale. Kill-off patterns are established using bones accumulated for time periods that might cover many centuries and correspond to the dietary trends of a human population of unknown size, whereas isotopic data reflect the actual diet of approximately the last decade of life of the analysed individuals. Moreover, zooarchaeological data provide quantitative information about meat (and dairy) diet without any clue about the relative importance of other dietary sources, especially plant material, for which preservation potential is low.

Mixed economies are sometimes suggested by the study of faunal remains. This has been clearly demonstrated in some prehistoric Middle Eastern sites [47]. Quantifying the contribution of different food categories is thus a critical issue for palaeoeconomic interpretations and the understanding of the role of different economic activities in past societies. This pioneer work in Central Asia advocates a systematic collection of human bones associated to animal remains in prehistoric archaeological sites for joint zooarchaeological and isotopic studies, when the question of palaeodietary reconstruction is posed.

Acknowledgements

We thank Dr. Olivier Lecomte for his invitation to one of us (M.M.) to participate to fieldwork and to study the faunal remains at Geoktchik Depe and Misrijan. We also thank Pr. Egen Attagariev for his help in the field and for having made the material available for this study.

References

