COAP 2019 Best Paper Prize: Paper of Andreas Tillmann

Each year, the editorial board of Computational Optimization and Applications selects
a paper from the preceding year’s publications for the Best Paper Award. Two of the 92
papers published by the journal in 2019 tied for the award. This article highlights the
research related to the award winning paper of Andreas Tillmann (Technische Univer-
sitét Braunschweig) whose award winning paper “Computing the spark: mixed-integer
programming for the (vector) matroid girth problem” was published in volume 74,
pages 387-441.

Tillmann’s paper [9] provides an in-depth investigation of the problem of comput-
ing the smallest number of linearly dependent columns of a given matrix, known as
the spark of the matrix or as the girth (that is, length of a shortest circuit) of the
associated matroid. The work identifies polynomially solvable special cases of the gen-
erally NP-hard problem, reviews related complexity results as well as upper and lower
bounding procedures, proposes novel exact integer and mixed-integer programming
(MIP) formulations, and develops a dedicated branch-and-cut algorithm involving tai-
lored primal heuristics, domain propagation routines, and cutting planes. Extensive
numerical experiments show that significant computational gains (compared to black-
box MIP approaches) can be achieved by means of exploiting problem-specific structure
that is based in no small part on the connection to matroid theory.

The spark of a matrix A € R™*" is defined as

spark(A4) := min{||z|jo : Az =0, = # 0}, (1)

where ||z||o := [{j : ; # 0}|. It is essential in the context of compressed sensing and the
core sparse recovery problem (Po):= min{||z||o : Az = b}, since every k-sparse vector
% is the unique sparsest solution to Az = b with b := A% if and only if 2k < spark(A)
(see, e.g., [4]). Moreover, conditions involving the spark are used to identify ambiguities
in linear sensor arrays [7], check the existence of unique tensor decompositions [6], verify
k-stability for matrix completion [11], and more.

Computing the spark is NP-hard in general [10], and prior to [9], known exact
methods were either essentially brute-force enumerative schemes (e.g., [2]) or based on
reformulations that are much less amenable to exploiting problem-specific structural
knowledge (e.g., [5,1]). In contrast, the direct approach taken by the author allowed to
utilize fast heuristics and lower bounds from the rich field of compressed sensing and
inference/propagation rules rooted in the matroid viewpoint to aid the branch-and-
bound search process.

The MIP model proposed for general-purpose (black-box) solvers reads

min ILTy S.t. Az =0, —y+2z<z <y, 172=1. (2)

z€R™;y,z€{0,1}"

Here, scalability of nullspace vectors (z with Az = 0) is exploited to enforce bounds +1
on z via auxiliary binary variables y that model the support of z (so that ||lz]lo =1y
in the optimum) and the binary vector z is used to fix one of the z-variables to 1,
enforcing that = # 0. The author reports that related matroid-dual approaches (from
[5] and [1], as well as a novel alternative) solved significantly slower that (2). Similarly,
MIP solver performance using (2) was observed to be superior to both a sequential
approach (fixing each z-variable to 1 in turn, the minimum of the resulting sequence
of (Po)-problems coinciding with the spark) and one where the nontriviality constraint
x # 0 was realized by fixing ||z|[1 = 1.



Moreover, based on the observation that in a matroid M, every dependent set
has nonempty intersection with the complements of all bases, a pure binary IP was
introduced for matroid girth computation:

. T c
min 1 s.t. BY) = i <1 Vbases B of M, 3
Jhin y y(B°) sz yj < 3)

where for spark(A), the bases are the column-index sets of all m x m regular submatri-
ces of A, assuming without loss of generality that rank(A) = m < n. Thus, (3) treats
the constraints Az = 0 and x # 0 implicitly, and works solely with the auxiliary sup-
port variables y. While there can, in general, be exponentially many bases of a matroid,
[9] proceeds to show that the separation probem for the so-called covering inequalities
in (3)—i.e., given some gy € [0, 1]”, either find a (maximally) violated covering inequal-
ity or conclude that they are all satisfied—can be solved in (independence-)oracle-
polynomial time for general matroids, and in time O(n(log(n) + m?3)) for the vector
matroid (spark) case, by a simple greedy scheme: Build a basis by traversing the entries
of ¢ in non-increasing order, adding indices so that independence of the constructed
set is maintained. These results laid the groundwork for the specialized spark problem
solver developed subsequently.

The problem-specific branch-and-cut solver merged (2) and (3)—mnote that the y-
variables have the same meaning in both models, so the constraints from (3) can
be added as cutting planes during the solving process of (2). Various other solver
components were addressed and specialized besides separation of covering inequalities.
For example, the propagation routine ensures that the index set of y-variables fixed
to 1 is always independent, and as soon as a check finds that adding one more column
(index) yields a dependent set (i.e., a feasible solution), the remaining branch is cut
off immediately. The implementation also includes efficient primal heuristics (mostly
based on £1-norm minimization), other classes of cuts (in particular, generalized cycle
inequalities as known from set covering, and inequalities based on the sparsity pattern
of A), and a branching rule that eliminates the z-variables at the first level of the search
tree.

The spark solver was implemented in the open-source framework SCIP and com-
pared against the commercial solvers Cplex and Gurobi (applied to (2)) on a test set of
100 instances of sizes up to well over 1000 columns. The best-performing variant of the
author’s specialized code solved 82 instances (versus 66 and 58 for Cplex and Gurobi,
resp.) within one hour, with significantly lower average running times and search nodes,
and also achieved much lower optimality gaps (about 200% versus about 300%) on the
remaining 18 instances where all solvers hit the time limit.

The paper [9] has since inspired work on adapting the methodology to the special
case of binary matroids, which leads to the fundamental coding-theoretical problems of
minimum Hamming distance computation and certain maximum-likelihood decoding
tasks for binary linear codes ([8], and ongoing). Moreover, the approach is currently be-
ing extended to finding sparsest solutions to underdetermined inhomogeneous equation
systems (i.e., (Po), which corresponds to seeking shortest matroid circuits containing
a specific element), and has initiated research into matroid-based MIP methods for
matrix sparsification (cf., e.g., [3]), where spark computation appears as a subproblem.
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