nucleotides encoding an amino-terminal polystyrene tag. Sequence changes were introduced by site-directed mutagenesis using the Bio-Rad mutagenesis kit\(^{15}\) and confirmed by sequencing. The recombinant proteins were expressed in the bacterial strain BL21 (DE3) after induction with IPTG (0.5 mM) at room temperature and purified by Ni affinity chromatography.

T203F/T203Y Imaging

Samples were prepared by the methods of ref. 21 from 10\(^{-5}\) M solutions of protein diluted in 1 mg ml\(^{-1}\) BSA. Polyacrylamide gels (T = 15%, C = 5% without SDS) were prepared in pH 7 phosphate-buffered saline doped with protein (here T is the total concentration of monomer in g per 100 ml, C is the wt% of total monomer which is crosslinker, and SDS indicates sodium dodecyl sulphate). The gel host provided pore sizes small enough for convenient (and complete) immobilization of each protein molecule, while maintaining its naturally fluorescent, native conformation \(^{12,13}\).

Excitation with a 480-nm laser (100–2000 W cm\(^{-2}\)) at the gel/cover-slip interface occurred in the total-internal-reflection geometry; the emission was imaged with a Nikon inverted microscope (250-nm resolution) with an Omega S35D55 filter and a Princeton Instruments intensified frame transfer CCD (100 ms time resolution, 90 s collection time). Oxygen was not removed from samples for which data is shown, but samples prepared with ~10 min helium bubbling showed similar on/off behaviour. 405-nm irradiation was produced by a Hg arc lamp with line filter through the epi-illumination port (1 W cm\(^{-2}\)). The linear increase of detected photons as a function of laser intensity (100–2000 W cm\(^{-2}\)) indicated that saturation and multiphoton processes were negligible in these studies. Typical detected count rates of 5000–6000 photons s\(^{-1}\) at 2000 W cm\(^{-2}\) pumping intensity (~150,000 excitations s\(^{-1}\)) were achieved, with most of the molecules emitting several millions of photons without irreversible bleaching.

Autocorrelation analysis

We define the autocorrelation function, \(C(t)\), for discrete data points:

\[
C(t) = \sum_{i=0}^{N-1} I(i) - T \sum_{i=0}^{N-1} I(i + t) - T/\sum_{i=0}^{N-1} I(i) - T
\]

where \(T\) is the average intensity, \(t\) is the time summed from 0 to \(N\) 100-ms intervals, and \(I(t)\) is the time-dependent fluorescence intensity. Confidence limits were generated on the autocorrelations such that any values within the limits were consistent with zero\(^{19}\). Exponential fits of the autocorrelations were generated only for the statistically significant portions of the curves beyond the short time correlation spike arising from band-limited noise.

Received 8 April; accepted 17 June 1997.

Acknowledgements. We thank L. S. B. Goldstein and S. Kuniter for discussions. This work was supported by the NSF.

Correspondence and requests for materials should be addressed to W.E.M. (e-mail: wmoerner@usc.edu).
models of landscape evolution. It seems to be appropriate for biogenic transport and soil creep.

If we use this relationship in the mass conservation equation for soil thickness, \(h \) (Fig. 1),

\[
\frac{\partial h}{\partial t} = - \frac{\partial e}{\partial t} - \nabla \cdot \rho \mathbf{v}
\]

and assume steady-state soil thickness (that is, \(\partial h/\partial t = 0 \)), then soil production \(-\partial e/\partial t\) is given by

\[
\frac{\partial e}{\partial t} = - \rho_s \Lambda K \nabla^2 z
\]

where \(\rho_s \) and \(\rho_r \) are soil and rock bulk densities, \(z \) is ground surface elevation, \(e \) is the elevation of the bedrock–soil interface and \(t \) is time. Under such conditions, soil production should depend on hillslope curvature, \(\nabla^2 z \). Furthermore, if \(K \) is assumed to be spatially and temporally constant, we can use topographic curvature as a surrogate for soil production rates. The form of the soil production function (that is, \(-\partial e/\partial t \approx f(h) \)) can then be defined with field measurements of curvature and depth. We note that, according to equation (2), spatial variation of curvature across diffusion-dominated regions of the landscape indicates spatial variation in local production rates and that the landscape is not in equilibrium.

We can test directly this depth-dependent soil production rate by adapting the cosmogenic nuclide method of determining erosion rates. If we assume that bedrock conversion to soil reaches a steady state under a constant soil thickness, \(h \), and the soil bulk density remains constant, then the concentration of the cosmogenic radionuclide, \(C \) (in atoms \(g^{-1} \)), in the bedrock at the soil–bedrock interface is

\[
C = P(h, \theta) \left(\frac{1}{\lambda + \rho_r \varepsilon / \Lambda} \right)
\]

where \(P(h, \theta) \) is the nuclide production rate (in atoms \(g^{-1} \text{yr}^{-1} \)) at depth \(h \) and slope \(\theta \), \(\Lambda \) is the mean attenuation length (\(\sim 165 \text{ g cm}^{-2} \)), \(\lambda \) is the decay constant of the radionuclide (\(\lambda = \ln(2)/t_{1/2} \)), and \(\varepsilon \) (in cm \text{yr}^{-1}) is \(-\partial e/\partial t \) in equation (1). Equation (3) is of the same form as that used by others to calculate the erosion rate of bedrock (in which case, \(h \) and \(\theta \) equal zero)\(^{17,19}\). We solve for soil production rates as:

\[
\varepsilon = - \frac{\partial e}{\partial t} = \frac{\Lambda}{\rho_r} \left(\frac{P(h, \theta)}{C} \right)
\]

The production rates of \(^{10}\text{Be} \) and \(^{26}\text{Al} \) in quartz are known\(^{20,21} \), and we measure bulk densities and soil depths. The soil production function is determined by measuring the nuclide concentrations in bedrock sampled under different soil depths, calculating soil production rates, and plotting them against soil depth.

Equations (2) and (4) provide two independent methods to test the hypothesis that soil production rates decline with increasing soil thickness. The first relies entirely on field observations and can be applied only in areas where slope-dependent mass transport is dominant. The second does not require slope-dependent transport. Both require local soil thickness to be, on average, constant with time. The validity of this assumption will vary considerably depending on the field location.

We focused our study on small ridges (‘noses’) in Tennessee Valley, Marin County, California, a field site used for extensive geomorphological research\(^{22,23} \). Intensely sheared thrust sheets of greenstone, greywacke sandstone and chert, typical of the Jurassic–Cretaceous Franciscan assemblage in the Marin Headlands terrane, underlie the field area\(^{24,26} \). The area receives an average annual rainfall of 760 mm (ref. 27) and was grazed before 1972\(^{7} \).

There is no evidence that Pleistocene climate variation caused
Letters to Nature

dramatically fluctuating hillslope erosion rates or processes, although net sediment storage in valleys and landslide frequency in unchannelled valleys (hollows) may have varied. Although there may have been partial Pleistocene forest cover, there is no evidence of a Holocene forest. The vegetation is a mixture of coastal grassland and scrub. In colluvium-mantled hollows, exfiltrating subsurface flow and rain on saturated areas generate extended areas of saturation overland flow. The soil mantle varies in thickness across the landscape and is typically an organic-rich, stony loam with weak to no horizon development. Soil production seems to be due primarily to biogenic disruption of weathered bedrock. Soil and rock fragments from pocket gopher (Thomomys bottae) burrows abound, and soil pits show burrowing through the typically abrupt soil–bedrock boundary. Burrowing is also the primary mechanism for downslope soil transport and effective diffusivities have been quantified. Landsliding is mostly confined to steep hollows of thick colluvial deposits.

We selected four small ridges, each underlain by greywacke, for this study (Figs 2 and 3 left inset). The high topographic divergence of these small ridges and the modest slopes ensured that soil transport by landsliding has been insignificant. Figure 2 shows that curvature declines with increasing soil thickness, as predicted if curvature is a surrogate for soil production and soil production decreases with soil thickness. The large variance is expected because: (1) biogenic soil production causes short-term variation in local thickness; and (2) bedrock heterogeneity in resistance to weathering and mechanical disruption by biota leads to local variability in the curvature–thickness relationship. In general, strongly convex areas have thin soils and weakly convex areas have thicker soils.

We sampled bedrock from the base of the soil column and from exposed bedrock on three of the four surveyed small ridges and at other locations for cosmogenic nuclide analyses (Fig. 3 left inset). The samples reflect the range of soil thickness measured on these ridges. Figure 3 main figure shows that soil production rates, calculated from both 10Be and 26Al concentrations, decline exponentially with increasing soil depth. Erosion rates of prominent, isolated bedrock outcrops varied with rock type, with chert eroding the slowest. The average erosion rates we measured from stream sediments for two steep tributaries (labelled 1 and 2 in Fig. 3 left inset) were close to the maximum soil production rates (Table 1). Figure 3 right inset shows good agreement between the two methods even though no parameters were adjusted to match these data. Two general production laws have been proposed. An exponential decline of soil production with increasing soil depth was assumed to simulate the decrease in effectiveness of such mechanical processes as freeze-thaw or biogenic disturbance. A complex, bell-shaped polynomial function follows the intuition that maximum soil production occurs under a thin layer of soil. Dietrich et al. point out, however, that soil depths less than the peak are unstable (perturbations in thickness would strip the soil to bedrock) and found field-based agreement with an exponential production function. Although our data cannot reject the polynomial function, they do show that the peak production rate would occur under near-zero soil depth and would make little difference to modelling.

An important assumption in our analysis is steady-state local soil depth during soil production and transport. This assumption is justified in several ways. There is no evidence for shallow landsliding or erosion by overland flow on the convex regions we studied. Soil production by burrowing tends not to alter local soil thickness dramatically during burrowing. Numerical experiments by Dietrich et al. show that diffusion-dominated ridges quickly (in a few thousand years) reach local steady-state soil thickness. Topographic change on such ridges is slow and changes in soil production or transport with Pleistocene–Holocene climate change would have adjusted local soil thickness early in the Holocene. Last, the observed 10Be and 26Al concentrations imply erosion rates that would result in steady-state radionuclide concentrations in a few tens of thousands of years.

In contrast to the local steady-state condition for soils on the small ridges, our observations indicate that the landscape may be slowly changing morphologically. We find both the thinnest soils and the highest production rates on ridge crests, indicating the greatest lowering rates. Individual ridges with their different degrees of curvature may also be lowering at different rates (Fig. 2). Erosion rate varies with lithology and solitary outcrops are eroding slower than the surrounding landscape. Basin-wide erosion rates in the two primary tributaries of our catchment suggest that erosion is higher in these steep regions than on the gentler, lower-elevation small ridges; Dietrich et al. observed that nearly all shallow landslide scars in the catchment are in those regions. The northern tributary basin may be lowering more rapidly than the southern one (Fig. 3). Although local, short-term variation in lowering rates can be expected on landscapes, our results suggest that Tennessee Valley is undergoing systematic morphological change. We also observe that such deviation from dynamic equilibrium can be inferred from landscape form, as proposed by Dietrich et al. For the divergent ridge crests, or ridges where diffuse transport processes are dominant, spatial variation in curvature implies variation in lowering rates. We note however, that soil depth variation alone does not indicate disequilibrium. Ahnert showed that constant-form

Table 1 Measurements of cosmogenic nuclide concentrations

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (cm)</th>
<th>Slope (deg)</th>
<th>Elev (m)</th>
<th>Quartz wt (g)</th>
<th>26Al (10⁶ atoms g⁻¹)</th>
<th>10Be (10⁷ atoms g⁻¹)</th>
<th>26Al/10Be</th>
<th>h-slope factor</th>
<th>dε/dt (mMyr⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV-2</td>
<td>0</td>
<td>8</td>
<td>135</td>
<td>40.66</td>
<td>0.600 ± 0.101</td>
<td>0.115 ± 0.006</td>
<td>5.22 ± 0.92</td>
<td>1</td>
<td>39 ± 8</td>
</tr>
<tr>
<td>TV-3</td>
<td>16</td>
<td>10</td>
<td>120</td>
<td>40.06</td>
<td>0.447 ± 0.054</td>
<td>0.108 ± 0.007</td>
<td>4.15 ± 0.56</td>
<td>0.87</td>
<td>47 ± 15</td>
</tr>
<tr>
<td>TV-4</td>
<td>0</td>
<td>15</td>
<td>275</td>
<td>42.68</td>
<td>1.35 ± 0.078</td>
<td>0.59 ± 0.017</td>
<td>4.85 ± 0.37</td>
<td>0.98</td>
<td>20 ± 5</td>
</tr>
<tr>
<td>TV-6</td>
<td>0</td>
<td>20</td>
<td>100</td>
<td>42.58</td>
<td>1.440 ± 0.081</td>
<td>0.230 ± 0.016</td>
<td>6.32 ± 0.52</td>
<td>0.53</td>
<td>21 ± 3</td>
</tr>
<tr>
<td>TV-10</td>
<td>51</td>
<td>17</td>
<td>85</td>
<td>40.71</td>
<td>0.939 ± 0.104</td>
<td>0.117 ± 0.011</td>
<td>5.49 ± 0.71</td>
<td>0.59</td>
<td>25 ± 4</td>
</tr>
<tr>
<td>TV-11</td>
<td>0</td>
<td>21</td>
<td>120</td>
<td>32.39</td>
<td>0.234 ± 0.035</td>
<td>0.040 ± 0.005</td>
<td>5.92 ± 1.20</td>
<td>0.98</td>
<td>107 ± 23</td>
</tr>
<tr>
<td>TV-12</td>
<td>30</td>
<td>15</td>
<td>115</td>
<td>40.56</td>
<td>0.394 ± 0.091</td>
<td>0.074 ± 0.006</td>
<td>5.28 ± 1.30</td>
<td>0.72</td>
<td>60 ± 16</td>
</tr>
<tr>
<td>TV-13</td>
<td>49</td>
<td>18</td>
<td>140</td>
<td>40.03</td>
<td>1.060 ± 0.112</td>
<td>0.155 ± 0.003</td>
<td>7.03 ± 0.96</td>
<td>0.61</td>
<td>26 ± 5</td>
</tr>
<tr>
<td>TV-15</td>
<td>20</td>
<td>15</td>
<td>130</td>
<td>43.33</td>
<td>0.563 ± 0.055</td>
<td>0.083 ± 0.006</td>
<td>6.77 ± 0.83</td>
<td>0.85</td>
<td>48 ± 8</td>
</tr>
<tr>
<td>TV-16</td>
<td>35</td>
<td>20</td>
<td>133</td>
<td>45.05</td>
<td>0.741 ± 0.076</td>
<td>0.134 ± 0.007</td>
<td>5.54 ± 0.64</td>
<td>0.68</td>
<td>33 ± 5</td>
</tr>
<tr>
<td>TV-17</td>
<td>60</td>
<td>25</td>
<td>133</td>
<td>52.27</td>
<td>0.914 ± 0.015</td>
<td>0.161 ± 0.015</td>
<td>5.66 ± 0.77</td>
<td>0.54</td>
<td>27 ± 5</td>
</tr>
<tr>
<td>Creek1a</td>
<td>NA</td>
<td>NA</td>
<td>113</td>
<td>52.27</td>
<td>0.414 ± 0.033</td>
<td>0.053 ± 0.006</td>
<td>6.11 ± 1.00</td>
<td>1</td>
<td>64 ± 12</td>
</tr>
<tr>
<td>Creek1b</td>
<td>NA</td>
<td>NA</td>
<td>113</td>
<td>52.27</td>
<td>0.366 ± 0.050</td>
<td>0.063 ± 0.006</td>
<td>5.81 ± 0.95</td>
<td>1</td>
<td>66 ± 13</td>
</tr>
<tr>
<td>Creek2</td>
<td>NA</td>
<td>NA</td>
<td>58</td>
<td>52.27</td>
<td>0.239 ± 0.049</td>
<td>0.041 ± 0.005</td>
<td>5.87 ± 1.37</td>
<td>1</td>
<td>102 ± 25</td>
</tr>
</tbody>
</table>
hillslopes(113,691),(950,717) with spatially variable soil depths develop when the soil production function varies with underlying lithology.

The peak soil-production rate determines what tectonic and erosional environments bedrock will emerge or become dominant across a landscape. If the soil production function varies with climate, bedrock and biota, then landscapes under similar tectonic regimes can have different morphology, ranging from fully soil-mantled rounded hills to bedrock cliffs. Our two independent methods provide a means to define empirically soil production functions for different rock types and climates. This should facilitate exploring the role of geology and climate in landscape evolution.

Received 28 January; accepted 12 June 1997.

Acknowledgements. We thank K. Heinmuth and L. Cossey for field and laboratory assistance; D. DePaolo for laboratory space; D. Lal for suggestions; and the Golden Gate National Recreation Area for access to our study site. We thank P. Birman and A. Howard for comments on the manuscript. This work was supported by Cal Space, IGPP-LLNL, NSF, NASA, DOE and a Switzer Environmental fellowship.

Correspondence and requests for materials should be addressed to A.M.H. (e-mail: arjun@moray.berkeley.edu).